
New examples of zero modes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 7297

(http://iopscience.iop.org/0305-4470/33/41/304)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/41
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 7297–7303. Printed in the UK PII: S0305-4470(00)12627-7

New examples of zero modes

Daniel M Elton
School of Mathematical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK

Received 8 March 2000

Abstract. We construct smooth vector potentials A(1) and A(2) on R
3 such that the associated

Pauli operators σ · (D − A(i)), i = 1, 2, have zero-energy eigenfunctions (or zero modes). The
first example A(1) has compact support and the associated zero mode is contained in L2. The
second example can be written in the form A(2) = (−x2, x1, 0)T + Ã(2) where Ã(2) is bounded and
supported on {|x3| � 1}. Furthermore the associated zero mode is Schwartz class.

1. Introduction

This paper is concerned with the kernel of the Pauli operator σ · (D − A) on R
3. Here

σ = (σ1, σ2, σ3) where the σis are the Pauli matrices, D = −i∇ where ∇ = (∂1, ∂2, ∂3)

denotes the gradient operator on R
3 and A is a real vector (magnetic) potential. The Pauli

operator acts on two-component spinor fields, which (for our purposes) are simply C
2-valued

functions on R
3. We are interested in studying vector potentials for which the associated Pauli

operator possesses zero-energy eigenfunctions or zero modes; that is, we wish to study those
A for which there exists a nontrivial spinor field ψ ∈ L2 such that σ · (D − A)ψ = 0.

Apart from their intrinsic interest, the study of zero modes has considerable importance in
mathematical physics. The first examples of zero modes were given in [9] where the authors
were principally motivated by an accompanying paper [6]. In the latter it was proved that the
existence of zero modes of the Pauli operator on R

3 implied the collapse of single-electron
atoms for sufficiently large nuclear charge.

A second area in which zero modes arise is in the study of the three-dimensional fermionic
determinant in quantum electrodynamics. The existence and degeneracy of zero modes is
related to the nonperturbative behaviour of this determinant for massive fermions in strong
magnetic fields; see [7, 8] for further details.

Paper [9] contains not only the first explicit examples of zero modes but two general
methods for their construction (appearing in sections 2 and 3, respectively). The explicit
examples in [9], together with further examples given in [1], all come from applications of the
method in section 2. The original examples of [9] were studied in greater detail in [2], where
it was shown that the set of zero modes for a given magnetic potential could be arbitrarily
degenerate. The authors of [1,2] also observed relationships between their examples, a certain
‘topological number’ and Hopf maps (see also [3]). The latter appeared in a related manner
in [5]; here a new class of examples was constructed, essentially by pulling back particular
magnetic fields from R

2 to R
3 via stereographic projections and Hopf maps. These fields were

then shown to produce zero modes related to the well known Aharonov–Casher zero modes
(see [4]) of the original two-dimensional fields.

0305-4470/00/417297+07$30.00 © 2000 IOP Publishing Ltd 7297



7298 D M Elton

In [8] comparisons between zero modes in two, three and four dimensions were made. In
particular it was suggested that zero modes in three dimensions may have a topological origin,
as is the case for the Aharonov–Casher zero modes (their two-dimensional counterparts).
The classes of examples mentioned above, together with the associated observations, tend to
support such an idea. However, it should be emphasized that the study of zero modes in three
dimensions is still in its infancy and no general results pertaining to a topological link exist at
present.

This paper concerns the construction of two new examples of zero modes in three
dimensions. We begin by constructing smooth magnetic potentials A(1) and A(2) on R

3

and then use ideas from section 3 of [9] to find spinor fields ψ(1) and ψ(2) which satisfy
σ · (D − A(i))ψ(i) = 0 for i = 1, 2. Particular properties of these examples are as follows.

Example 1. The spinor field ψ(1) is contained in the Sobolev space Hp,s for any p ∈
(3/2,+∞] and s ∈ R. The magnetic potential A(1) is smooth and is supported on the unit
ball in R

3. It follows that the associated magnetic field B(1) := curlA(1) is also smooth and
supported on the unit ball.

Example 2. The spinor field ψ(2) is Schwartz class; that is, ψ(2) is smooth and, along with
derivatives of arbitrary order, has super-power decay as |x| → +∞. We can write the magnetic
potential in the formA(2) = (−x2, x1, 0)T + Ã(2) where Ã(2) is smooth, bounded and supported
on {|x3| � 1}. The associated magnetic field B(2) := curlA(2) can then be written as a
perturbation of the constant magnetic field (0, 0, 2)T by B̃(2) := curlÃ(2). This perturbation is
smooth, supported on {|x3| � 1} and decays like O(|x|−1) as |x| → +∞.

These examples do not appear to be included in the classes of examples produced in [1,2,5]
or section 2 of [9]. Furthermore they appear to be the first explicit examples employing the
general method for constructing zero modes as outlined in section 3 of [9]. In the absence
of general results about three-dimensional zero modes it is important to broaden the class of
known examples as much as possible. In particular, new examples are useful for determining
which topological properties are specific to a given class of examples and which might be
present in general.

These new examples are also important for restricting the type of analytic conditions on
a magnetic potential that might ensure the nonexistence of zero modes. For example, the
arguments in section 4 of [6] show that any unidirectional magnetic field cannot possess zero
modes (note: only the direction is assumed to be fixed; the field strength can vary). Furthermore
a classical particle in a magnetic field which is constant in a conical region of R

3 with axis
parallel to the field is free to escape to infinity along the field lines. It is then not unreasonable
to conjecture that the corresponding quantum system (i.e. the Pauli equation) will not admit
zero-energy bound states (i.e. zero modes). Example 2 obviously shows this conjecture to be
false. In fact, the two examples clearly impose very broad limitations on the type of analytic
conditions that might guarantee the nonexistence of zero modes. In this respect these examples
lend weight to the idea that zero modes in three dimensions have a topological origin.

Notation. Points in R
3 are denoted as x = (x1, x2, x3). We also use radial coordinates r and

ρ on R
3 defined by

r = |x| = (x2
1 + x2

2 + x2
3 )

1/2 and ρ = (x2
1 + x2

2 )
1/2.

If u is a function on R
+ then u(r) defines a radially symmetric function on R

3. Whenever
the domain is clear from the context this latter function is also denoted by u. In general, if u
is smooth on R

+ and has a Taylor series expansion which is valid at 0 and contains only even
powers, then u(r) is smooth on R

3.
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We use ∂ρ to denote the differential operator on R
3 defined by ρ∂ρ = x1∂1 + x2∂2, whilst

a prime denotes differentiation on R or R
+. Thus, with u as given above, ∂iu = xir

−1u′.

2. Auxiliary results

The construction of both examples relies on the ‘if’ part of the next result (which is a summary
of observations made in the first part of section 3 of [9]).

Proposition 1. Suppose ψ is a smooth spinor field on R
3 with 〈ψ,ψ〉 nowhere vanishing and

A is a real vector potential also on R
3. Then ψ and A satisfy

σ · (D − A)ψ = 0

if and only if they satisfy the pair of equations

A = 1

〈ψ,ψ〉
(

1

2
curl〈ψ, σψ〉 + Im 〈ψ,∇ψ〉

)
and div〈ψ, σψ〉 = 0.

Remark. For any spinor ψ = (
ψ1

ψ2

)
we have

〈ψ, σψ〉 =
( 2Re (ψ1ψ2)

2Im (ψ1ψ2)

|ψ1|2 − |ψ2|2

)
. (1)

The construction of both examples makes use of a common auxiliary function. For the
remainder of the paper we suppose g is a fixed choice of function with the following properties:

(A1) g : R → R is smooth, compactly supported and non-negative.
(A2) g(t) = (4 − t2)1/2 for t ∈ [−1/2, 1/2].
(A3) supp(g) ⊆ [−1, 1].
(A4) ±g′(t) � 0 for ±t � 0.

Together, properties (A1)–(A4) imply Ran(g) = [0, 2]. Also property (A2) ensures the
radially symmetric function g(r) is smooth on R

3.

3. Example 1

Define a real valued function f on R
+ by

f (r) = r−3

(
−
∫ r

0
t4(g2)′(t) dt

)1/2

(2)

for all r > 0. Using (A1)–(A4) it can be seen that the integrand is smooth, nonpositive for any
t � 0 and strictly negative for sufficiently small t > 0. Therefore the integral is strictly negative
for any r > 0. It follows that f is smooth on R

+. Also, using (A2), we get f (r) = 1/
√

3
for r ∈ (0, 1/2]. Thus f (r) is a smooth strictly positive radially symmetric function on R

3.
Finally (A3) implies f (r) = C1r

−3 for all r � 1, where C1 is the strictly positive constant
defined by

C2
1 = −

∫ 1

0
t4(g2)′(t) dt.

Now define a smooth spinor field ψ(1) on R
3 by

ψ(1)(x) = f (r)

(
x3

x1 + ix2

)
+

(
ig(r)

0

)
. (3)



7300 D M Elton

Thus

〈ψ(1), ψ(1)〉 = r2f 2 + g2. (4)

Since f (r) > 0 for all r ∈ R
+ and g(0) = 2 > 0, it follows that 〈ψ(1), ψ(1)〉 is nowhere

vanishing. On the other hand, using (1) we have

〈ψ(1), σψ(1)〉 =
( 2x1x3f

2 + 2x2fg

2x2x3f
2 − 2x1fg

(x2
3 − x2

1 − x2
2 )f

2 + g2

)
. (5)

Therefore

div〈ψ(1), σψ(1)〉 = 2x3f
2 + 2x2

1x3r
−1(f 2)′ + 2x1x2r

−1(fg)′

+ 2x3f
2 + 2x2

2x3r
−1(f 2)′ − 2x1x2r

−1(fg)′

+ 2x3f
2 + x3r

−1(x2
3 − x2

1 − x2
2 )(f

2)′ + x3r
−1(g2)′

= x3r
−5(r6f 2)′ + x3r

−1(g2)′

= 0

where the last line follows from (2).
Let A(1) be the vector potential given by proposition 1 with ψ = ψ(1). Now suppose

r � 1. Thus f (r) = C1r
−3 and g(r) = 0 so (3) and (5) become

ψ(1) = C1r
−3

(
x3

x1 + ix2

)
(6)

and

〈ψ(1), σψ(1)〉 = C2
1r

−6

( 2x1x3

2x2x3

x2
3 − x2

1 − x2
2

)

respectively. Straightforward calculations then give

curl〈ψ(1), σψ(1)〉 = −2C2
1r

−6

(−x2

x1

0

)

and

〈ψ(1),∇ψ(1)〉 = C2
1r

−6

(−2x1 − ix2

ix1 − 2x2

−2x3

)
.

Combining these expressions we thus have

A(1) = 1

〈ψ(1), ψ(1)〉
(

1

2
curl〈ψ(1), σψ(1)〉 + Im 〈ψ(1),∇ψ(1)〉

)
= 0

on {r � 1}. ThereforeA(1) is supported on the unit ball {r � 1}. Nowψ(1) is smooth whilst (6)
implies 〈ψ(1), ψ(1)〉 = C2

1r
−4 when r � 1. Thus ψ(1) ∈ L2. Using similar reasoning it is in

fact clear that ψ(1) ∈ Hp,s for any p ∈ (3/2,+∞] and s ∈ R.

4. Example 2

Since Ran(g) = [0, 2] we have 4 − g2 � 0. Thus we can define a function h by

h(t) =
{−(4 − g2(t))1/2 for t � 0
(4 − g2(t))1/2 for t � 0.
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Property (A2) of g gives h(t) = t for t ∈ [−1/2, 1/2]. Since (A1), (A2) and (A4) imply
4 − g2 is strictly positive away from 0 it follows that h is smooth. Furthermore it is easy to
check that

h2 + g2 = 4 (7)

and

h(t) = ±2 for ± t � 1. (8)

Using h, define a further smooth function k on R by k = ∫
0 h. Now consider g, h and k as

smooth functions on R
3 depending on x3 and constant in x1 and x2. Define a smooth function

u and a smooth spinor field ψ(2) on R
3 by

u = e−ρ2/2−k and ψ(2) = u

(
(ρ2 − 1)(−h + ig)

2(x1 + ix2)

)
.

By (8) we have k = ±2x3 + C2± for ±x3 � 1, where C2± is some constant. It follows that u
and hence ψ(2) are Schwartz class functions.

Now, using (7),

〈ψ(2), ψ(2)〉 = ((ρ2 − 1)2(h2 + g2) + 4ρ2)u2 = 4((ρ2 − 1)2 + ρ2)u2. (9)

Since u is nowhere zero the same must be true for 〈ψ(2), ψ(2)〉. Using (1) and (7) again we
also get

〈ψ(2), σψ(2)〉 = 4u2

(
(ρ2 − 1)(−x1h + x2g)

(ρ2 − 1)(−x2h− x1g)

(ρ2 − 1)2 − ρ2

)

= −hv
(
x1

x2

0

)
+ gv

(
x2

−x1

0

)
+

( 0
0

4(ρ4 − 3ρ2 + 1)u2

)

where v = 4(ρ2 − 1)u2. A straightforward calculation now gives

div〈ψ(2), σψ(2)〉 = −2hv − (x2
1ρ

−1 + x2
2ρ

−1)h∂ρv − (x1x2ρ
−1 − x1x2ρ

−1)g∂ρv

+4(ρ4 − 3ρ2 + 1)∂3(u
2)

= − 2hv − ρh∂ρv + 4(ρ4 − 3ρ2 + 1)∂3(u
2).

However, ∂3(u
2) = −2hu2 whilst

−2hv − ρh∂ρv = −8(ρ2 − 1)hu2 − 4ρ(2ρ + (ρ2 − 1)(−2ρ))hu2

= 8(ρ4 − 3ρ2 + 1)hu2.

The above expressions combine to give div〈ψ(2), σψ(2)〉 = 0. Let A(2) be the real vector
potential given by proposition 1 with ψ = ψ(2); that is,

A(2) = 1

〈ψ(2), ψ(2)〉
(

1

2
curl〈ψ(2), σψ(2)〉 + Im 〈ψ(2),∇ψ(2)〉

)
.

A tedious, although straightforward, calculation allows us to computeA(2) explicitly from this
formula. Firstly

curlhv

(
x1

x2

0

)
= 4(ρ2 − 1)(h′ − 2h2)u2

(
x2

−x1

0

)

curlgv

(
x2

−x1

0

)
= 4(ρ2 − 1)(g′ − 2hg)u2

(
x1

x2

0

)
+

( 0
0

8(ρ4 − 3ρ2 + 1)gu2

)



7302 D M Elton

and

curl

( 0
0

4(ρ4 − 3ρ2 + 1)u2

)
= −8(ρ4 − 5ρ2 + 4)u2

(
x2

−x1

0

)
.

On the other hand

∂1ψ
(2) = −x1ψ

(2) + u

(
2x1(−h + ig)

2

)

∂2ψ
(2) = −x2ψ

(2) + u

(
2x2(−h + ig)

2i

)
and

∂3ψ
(2) = −hψ(2) + u

(
(ρ2 − 1)(−h′ + ig′)

0

)
so

Im 〈ψ(2),∇ψ(2)〉 = u2

( −4x2

4x1

(ρ2 − 1)2(h′g − hg′)

)
.

Combining the above calculations then gives

〈ψ(2), ψ(2)〉A(2) = 2(ρ2 − 1)(g′ − 2hg)u2

(
x1

x2

0

)

+ (2(ρ2 − 1)(h′ − 2h2)− 4(ρ4 − 5ρ2 + 5))u2

(
x2

−x1

0

)

+ u2

( 0
0

4(ρ4 − 3ρ2 + 1)g + (ρ2 − 1)2(h′g − hg′)

)
.

Now, by (7),

2(ρ2 − 1)(h′ − 2h2)− 4(ρ4 − 5ρ2 + 5) = 2(ρ2 − 1)(h′ + 2g2)− 4((ρ2 − 1)2 + ρ2).

From (9) we therefore get A(2) = (−x2, x1, 0)T + Ã(2) where

4((ρ2 − 1)2 + ρ2)Ã(2) = 2(ρ2 − 1)(g′ − 2hg)

(
x1

x2

0

)
+ 2(ρ2 − 1)(h′ + 2g2)

(
x2

−x1

0

)

+

( 0
0

4(ρ4 − 3ρ2 + 1)g + (ρ2 − 1)2(h′g − hg′)

)
.

Now, as functions on R
3, supp(g), supp(h′) ⊆ {|x3| � 1} by (A3) and (8), respectively. It

follows that Ã(2) is also supported on {|x3| � 1}. Furthermore Ã(2) is bounded on this set. If
we set

B(2) = curlA(2) =
( 0

0
2

)
+ B̃(2)

(so B̃(2) = curlÃ(2)) then supp(B̃(2)) ⊆ {|x3| � 1} and

B̃
(2)
1 , B̃

(2)
2 = O(ρ−1) B̃

(2)
3 = O(ρ−2)

as ρ → +∞, uniformly for |x3| � 1. In particular, B̃(2) decays at infinity.
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